来源:Hypersen(海伯森)
发布时间:2025-09-30
光学板(如光学玻璃、亚克力板、导光板等,广泛应用于显示设备、光学仪器、激光系统等领域)的轮廓及瑕疵检测是保障其光学性能、结构适配性和使用可靠性的关键环节,主要目的如下:
一、确保轮廓精度,保障结构与功能适配
光学板的轮廓(如尺寸、平整度、弯曲度、边缘角度等)直接影响其在设备中的装配精度和功能实现:
结构适配性:在精密光学系统(如镜头模组、投影仪光路)中,光学板的轮廓尺寸需与其他部件严格匹配,若轮廓偏差过大(如厚度不均、边缘不平整),会导致装配间隙超标、光路偏移,甚至无法正常安装。
光学性能稳定性:部分光学板(如导光板、棱镜)的轮廓设计直接决定光线的折射、反射路径,轮廓精度不足会导致光路紊乱(如显示设备亮度不均、光学仪器成像模糊),检测轮廓可确保其符合光学设计参数。
机械强度保障:轮廓缺陷(如边缘崩裂、厚度突变)可能导致应力集中,降低光学板的抗冲击性,在后续加工或使用中(如受振动、温度变化)易断裂,影响设备寿命。
二、满足高端领域的严苛要求
在高端应用场景(如半导体光刻、航天光学系统、医疗精密仪器)中,光学板的轮廓精度和瑕疵容忍度极低(甚至要求 “纳米级” 误差、零可见瑕疵),检测的目的更聚焦于:
确保光学系统的极限性能(如光刻机的光学板轮廓误差需控制在微米级,否则直接影响芯片制程精度);保障设备的长期稳定性(如卫星光学镜头的光学板,微小瑕疵可能在太空环境中因辐射、温差逐渐扩大,导致任务失败)。
综上,光学板的轮廓及瑕疵检测本质是通过对 “结构精度” 和 “光学纯净度” 的双重把控,确保其在光学系统中既能精准适配、高效发挥功能,又能在长期使用中保持稳定与安全,尤其对高端领域的设备性能和可靠性起到决定性作用。
01
检测需求
根据客户提供的测试需求,利用线光谱扫描光学板表面轮廓,对数据轮廓进行分析得出凹槽深度、宽度数据,以及表面的缺陷检测。
02
选型及原理
使用海伯森HPS-LCX1000
光谱共焦测量通过使用特殊透镜,延长不同颜色光的焦点光晕范围,形成特殊放大色差,使其根据不同的被测物体到透镜的距离,会对应一个精确波长的光聚焦到被测物体上。通过测量反射光的波长,就可以得到被测物体到透镜的精确距离。
03
检测过程图
高清深度图
高清灰度图
3D点云图
凹槽检测
在测试的灰度图上截取轮廓进行数据计算
灰度图截线示意
3D点云图截面示意
截取计算三个凹槽的深度宽度数据分别为:凹槽1深度26.2um,宽度164.4um、凹槽2深度28.1um,宽度151.4um、凹槽3深度28.7um,宽度158.4um。
瑕疵检测
04
设备结论
用LCX1000扫描光学板上表面图像可以清晰得到凹槽的轮廓,凹槽的深度、宽度可用我们客户端手动截取简单计算(因手动划取区域宽度信息定义没那么标准),凹槽的弧度可用其他视觉软件进行处理计算。同时光学板上的瑕疵清晰可见,所以亦可检测其瑕疵缺陷。
产品介绍
CHAN PIN JIE SHAO
3D闪测传感器
同轴3D线光谱共焦传感器
超高速工业相机
高端高分辨率的黑白CMOS工业相机,具有大像元尺寸、低噪音、超高帧率、远距离传输等特点;相机采用了10G/40G光纤接口,支持Genlcam GenTL标准;适用于机器视觉定位,高速工业检测,高速运动分析等领域。
六维力传感器
高性能的数字式六维力传感器,可实现XYZ三个空间坐标轴上的力和力矩的精准测量,采用了应变体结构,具有良好的抗过载和耐久性,工作时最高可达3.5倍的安全过载。且内置的温度补偿算法大大降低了温度变化导致的温度漂移。适用于柔性抓取、自动化测量、机器人关节与风洞测试等。
点光谱共焦传感器
可实现镜面表面±62°,漫反射表面±88°超大角度测量
支持四通道同步测量
不受空间和测量区域限制,重复最小误差仅±0.01μm
完备的 SDK及一站式软件服务支持