来源:Murata(村田)
发布时间:2025-11-11
用智能手机拍照,将照片[数据]发送给熟人[发送],熟人接收照片[接收],这样的交流称为电气通信。之前,我们为你介绍了“数字通信的基础——什么是数字数据?”。本篇将解说“数据”的移动——信号、数据的传播速度——通信速度、以及将数据进行远距离传输所需的操作——数字调制等方面的基础知识。
数据的发送和接收
数据是记号和符号的集合,保存在数字设备或记录介质上时处于静态。下面,我们将看看这些数据是如何通过电缆或空间等传输路径(通信通道)进行动态传输的。
数据的移动和信号
当这些静态数据经过处理并从发射器沿着传输路径移动时,在本文中将该数据称为信号(图1)。通过互联网从智能手机向熟人发送照片时,数据会以信号的形式发送。信号是时间轴的特性(尽管它也具有频率轴的特性),在此为了简单起见,我们认为“将数据沿时间轴移动即成为信号”。
图1 数据与信号的关系
数据移动速度
上篇我们介绍过,数据的单位有bit(位)和将8bit合在一起的byte(字节)。同样,数据的移动——信号(图2)也有单位。这就是所谓的通信速度(传输速度),即每秒传输的数据量。
图2 8bit=1byte的数字信号(数字波形)示例
在图2的信号中,数据按照从先到后的顺序传输“01001101”。此外,信号电平是电压或电流,高(H)对应“1”,低(L)对应“0”。此外,这种波形称为矩形波或方波。
数据速度有好几种名称,表1对常见的名称进行了总结(在不同情况下可能使用不同的名称)。
|
信号速度 |
bps(也称为bit/s、b/s) |
|
调制速度 |
baud(称为“波特”) |
表1 数据速度的单位
提到数据速度时,通常使用的术语是“通信速度”。人们会经常看到它,因为它在智能手机和Wi-Fi规格等当中用作传输速度。其中,仅使用bps(bit per second)作为单位时,称为“信号速度”,主要使用B/s(byte per second)作为单位时,称为“传输速度”。传输速度根据传输的数据量以bit数、byte数、字符等为单位。
例如,1个字符为1byte,一次传输100个字符,则传输速度为100个字符/秒,即100B/s。1byte为8bit,因此转换为bit时,它相当于800bps的传输速度。这样在传输速度中使用单位[B/s]时,如果将其换算为[bps],则传输速度与信号速度相同。
关于另一个术语“调制速度”,包括调制速度与信号速度之间的关系,将在以后的篇幅“通信速度的高速化”中进行说明,因此这里仅指出数据速度中有调制速度。
数字调制
在电信领域,为了远距离传输数据,需要在发送侧进行称为“调制”的操作(图3)。
图3 以无线通信为例的发射侧调制模块
远距离数据传输所需的技术―调制
如果大声喊叫,声音或许可以传到十米、二十米远,但应该也只能传到几十米远。但是,通过将声音振动转换成电信号,并加载到电波(载波)上进行传输(调制),就可以实现远距离传输。该技术是模拟电话和模拟无线电的基本原理,是模拟调制的应用事例。
同样,以“0”和“1”表示的数字数据也可以通过调制实现远距离传输。借助这项技术,人们可以将智能手机中的照片数据进行调制并通过电波传输熟人手中。
数字调制的代表示例
为了远距离传输原始信号(基带信号,即数字数据本身移动时的信号),需要上述被称为载波的连续波(正弦波)。通过基带信号改变载波的振幅、频率和相位的过程就叫数字调制。由此产生调制波。
数字调制有多种方式,其中具有代表性的调制方式是ASK、FSK、PSK和QAM:
ASK调制
ASK(Amplitude Shift Keying modulation),即振幅偏移调制:该调制在基带信号为“1”时输出振幅恒定的载波。
FSK调制
FSK(Frequency Shift Keying modulation),即频率偏移调制:该调制在基带信号为“1”时输出高频,在基带信号为“0”时输出低频。
PSK调制
PSK(Phase Shift Keying modulation),即相位偏移调制:该调制在基带信号为“1”时输出相位差为0°的载波,在基带信号为“0”时输出相位差为180°的载波。
QAM调制
QAM(Quadrature Amplitude Modulation)指正交振幅调制/直角相位振幅调制:该调制使用相位差为90°的2个载波,并输出让这些载波的振幅发生变化后的载波。
以下就ASK、FSK和PSK对其示意图进行说明(QAM是将PSK的原理扩展后的调制方式,为了方便起见,将在本系列以后的篇幅“通信速度的高速化―数字通信的基础”中进行说明)。
图4 ASK调制的示意图
数字调制中的基本方式是ASK(Amplitude Shift Keying:振幅偏移)。如图4所示,通过改变载波的振幅来表示“0”和“1”。产生与基带信号一样——载波的高振幅(电压)表示“1”,低振幅表示“0”的调制波,并且振幅以与基带信号1位的时间长度(位长)相同的位长变化。
图4中,调制波的时间变化单位称为符号。如果是将“0”和“1”这2个值(1比特)通过1次调制来表达的二进制信号,则位长与符号长度相等。
图5 FSK调制的示意图
如图5所示,FSK(Frequency Shift Keying:频率偏移)以载波的频率为基准,通过向更低频率和更高频率偏移来表达“0”和“1”。在图5中,载波的频率为f时,将向比f更高的频率f1偏移时作为“1”,向比f更低的频率f0偏移时作为“0”。
图6 PSK调制的示意图
PSK(Phase Shift Keying:相位偏移)通过让载波的相位偏移来表达“0”和“1”。如图6所示,可以用相位为“0”的正弦波和相位处于错位半个周期(180°)的状态“π”的正弦波来分别表达“1”和“0”。
下表2总结了上面介绍的ASK、FSK和PSK调制各自的特点。每种方式都有各自的优点和缺点,应该采用哪种调制方式取决于目的、用途和环境。
|
抗噪性 |
低 |
中 |
高 |
|
功耗 |
低 |
中 |
高 |
表2 各调制方式的特点比较
表中的抗噪性指加载了数据的调制波在传输路径(空间)中传输时对外部噪声的抵御能力。如图7所示,抗噪性强,意味着通信质量高(调制波信号的错误率低)。
表中的频率利用效率,在此可以认为是表示单位时间里在同一频带内可以传输多少数据的指标。我们将在其他文章中对此进行相关解说。