Texas Instruments是一家总部位于美国德克萨斯州达拉斯的跨国公司,成立于1930年。它是一家全球领先的半导体设计和制造公司,其产品涵盖模拟IC、数字信号处理器(DSP)、微控制器、传感器、电源管理以及其他半导体器件和解决方案。产品广泛应用于消费电子、通信、工业、汽车、医疗等各种领域。公司以其创新的技术、高性能和高质量的产品而著称。
近日,德州仪器推出新型工业数字微镜器件 (DMD) DLP991UUV ,助力新一代数字光刻技术发展。作为 TI 迄今最高分辨率的直接成像解决方案,该器件具备 890 万像素、亚微米级分辨率能力及每秒 110 千兆像素的数据传输速率,在满足日益复杂的封装工艺对可扩展性、成本效益和精度要求的同时,消除对昂贵掩模技术的依赖。
电感器-电感器-电容器 (LLC)谐振转换器具有几个极具吸引力的特性,适用于需要隔离式直流/直流转换器的应用,这些特性包括极小的开关损耗、在低于谐振频率时不会进行反向恢复,以及承受变压器内较大漏电感的能力。
激光雷达 (LIDAR) 是指光探测与测距技术,有时亦称为飞行时间 (ToF) 或激光扫描仪,是一种探测物体并测量其距离的检测方式。这一技术的工作原理是使用光脉冲照射某个目标,然后测量反射返回信号的特性。光脉冲宽度在数纳秒到数微秒间不等。
在统一的处理环境中实现高级电机控制技术,例如无传感器磁场定向控制 (FOC) 或振动补偿,有助于显著减少协调工作量,减少时序变化并实现更可预测的行为。从软件角度来看,TI的 F28E120SC 等高度集成的实时控制微控制器 (MCU) 提供了统一的处理环境,设计人员可以使用该环境简化电机控制应用中检测、控制和驱动功能的实现。
机器智能正在开启生产力的新时代,并逐渐融入我们生活和社会的各个学科和职能领域当中。机器智能依赖计算平台来执行代码、解读数据,并能在瞬间从数万亿数据点中获取信息。支撑机器智能的计算硬件需具备高速度、极高可靠性与强大功能。设计人员必须将稳健的设计实践与自诊断功能及持续监测方案相结合,才能预防或管理系统中的潜在故障,如数据损坏或通信错误。
电池供电的电动自行车和电动踏板车为传统摩托车提供了一种可持续且环保的替代方案。许多电动自行车采用较大的 48V 或 36V 电池,在提供充足扭矩的同时支持以更低电流运行。然而,随着市场对大功率电动自行车需求不断增长,设计人员和制造商面临着确保安全与可靠的重大设计挑战。
汽车电池连接多个负载,包括电子控制单元 (ECU)、继电器和电机。一些系统级事件(例如打开或关闭电感负载)会导致电池电源线路上产生电压瞬变。所有反极性保护电路都必须保护下游电子负载免受这些系统级瞬态事件的影响。
全桥转换器为隔离式电源转换提供了一种高效的解决方案 (图 1)。在该拓扑内,控制方法的选择将影响转换器的整体性能。大多数工程师仅考虑硬开关全桥 (HSFB) 或相移全桥 (PSFB)。在本期电源设计小贴士中,将演示对脉宽调制 (PWM) 控制的全桥的简单修改,该全桥可以通过实现零电压开关 (ZVS) 来提高效率,并消除变压器绕组上的谐振振铃。